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Image enhancement algorithm based on NF-ICM
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Utilizing the intersecting cortical model (ICM) to enhance degraded images under poor illumination is
presented. As the key point, the general mapping function (MF) for image enhancement is deduced firstly
on the basis of the nature-firing ICM (NF-ICM), which restrains the traditional autowave effect of blurring
details and contrast. Then, the sigmoid MF is especially proposed to map the input gray-level to a more
proper range for visual looking, and it solves over-enhancement and artifact by the classical logarithm one.
For image enhancement application, the optimized parameters, initial threshold, and stopping condition in
NF-ICM are all analyzed in detail. Simulation results prove that the proposed method has more contrasted,
colorful, and good-visual performance.
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Saturation and underexposures are common in images
due to the limited dynamic range of the imaging and
display equipment. Especially, when insufficient or non-
uniform illumination occurs, the image may contain dark
regions in which objects or scenery are hard to recognize.
Abundant algorithms for image enhancement have been
brought about but they are too complex. From the op-
timization or even greedy point, the image enhancement
algorithm should be simple but to fit for different and
complicated scenes. Luckily, human visual characteris-
tics and visual cortex theory witness the improvement
on application and bring about the guidance for image
processing[1,2]. We learn from such a development and
present a new algorithm for image enhancement.

The intersecting cortical model (ICM) derived from
several visual cortex models was especially designed for
image processing[3]. The minimal system consists of two
coupled oscillators, a small number of connections, and
a nonlinear function. This system is described by[4]





Fij [n + 1] = f · Fij [n] + Sij + Wij{Y [n]}

Yij [n + 1] =





1 if Fij [n + 1] > Tij [n] ,

0 else

Tij [n + 1] = g · Tij [n] + h · Yij [n + 1]

(1)

where Sij is the stimulus; Yij is the firing state of the
neuron (Y is the output image); f , g, and h are scalars;
Wij{Y } describes the inter-neuron communications; i
and j are indices denoting each individual node.

Various forms of output and derivative ones give rise to
a wide range of application, and image enhancement is
the typical one[1]. But there is another focus for Wij{Y }
in the original ICM model. It is described as the source
of interference between objects and tendency to blur the
details and contrast. The solution to the interference
effect is based on curvature flow theory and requires a
re-definition for the W{·} item[5]. Actually, there leave
a lot of questions about how to give the proper form of
so-called centripetal autowave (CA)[3,6]. So a compro-
mise has to be made for performance and computational
complexity. We have to leave out the W{·} term to leave

the ICM model without the connection function, which
is always called nature-firing ICM (NF-ICM)[3]. Simula-
tion results show that such a tradeoff really works with
the removal of a time-consuming part: the convolution
one.

For the realization of enhancement, the key point is
how to design the mapping function (MF) to map the
input gray-level to the proper range for visual looking
with the use of Y , the only output of the ICM. Based
on the Weber theory, Zhang et al. introduced the loga-
rithm space to give the example of the output to apply
the human visual characteristics about the Mach band
effect[7]:

I en[n] = ln[Maxp − (n− 1) · θ] · Y [n], (2)

where at the nth time, I en is the output with the thresh-
old θ, the maximum intensity Maxp and the output image
Y by such MF. Obviously, the sum of I en is the final
output image. The kernel of Eq. (2) is the process that
a step-by-step decreasing value set by θ is conducted by
the following logarithm operation. With the high-to-low
firing condition, the result is obtained from the highest
gray-level to the lowest one. Noticeably, the results are
similar to but not the same as that obtained with global
MF applied to the original images directly, owing to the
whole firing process given by Eq. (1).

However, there exists a key weak point of this MF that
over-enhancement often occurs in the darkest and the
brightest regions just for the logarithm effects. More im-
portantly, if it is used in the NF-ICM, a certain number
of pixels in the image matrix surely will be never fired
under general parameters, which will lead to artifact sim-
ilar to the random noise for color image and degrade the
image quality seriously. Such phenomenon is easy to be
found, e.g., in the results of Ref. [8].

So, for those degraded images stated above, the
logarithm-MF is not very suitable but suggestive, and a
new proper one should be considered and adopted. From
the above analysis, the general MF for image enhance-
ment is easy to be deduced, that is:

I en =
∑

n

f(θ) · Y [n]. (3)
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For a different application, we can introduce a different
MF f(·) to operate on the decreasing value set by a step
parameter θ. The sum is the final result we desire, expe-
riencing the stepwise firing process. With the simplified
ICM model, NF-ICM, we propose the sigmoid-output
MF to enhance degraded images under poor illumination
especially. There are several key points, as illustrated in
detail below.

Actually, human vision is apt to have a more precise
or high-level resolution for the middle gray-level image,
especially the gray-level 127 nearby[9]. The mean of an
ideal visual image is often above the average gray-level
of 100[10].

The adaptive transfer function for pixel-to-pixel opera-
tion is often applied in the conventional tonal correction
techniques which usually bring about satisfactory results.
The sigmoid function is a continuous nonlinear activation
with the basic form as f(x)=1/[1+exp(−a·x)], where a
controls the curvature. We introduce a more parameter-
ized sigmoid function as the MF:

y = c/[1 + exp(−a · x + b)]. (4)

In comparison with the logarithm operator, such a sig-
moid function focuses more on the middle gray-level and
produces much more contrast in this field. We set a =
3, b = 1, and c = 1+exp(−a+b) as default values. The
enhancement framework is determined by Eq. (3) and
f(·) is assumed to act on the Maxp−(n−1)·θ all the same
for simplicity. The whole procedure is depicted in Fig.
1.

Now we consider the optimization of parameters in
NF-ICM. The scalars f and g are decay constants and
thus less than 1. In order to ensure that Fij eventually
becomes Yij , we will have f > g and the values of f , g,
h are typically 0.9, 0.8, and 20.0, respectively[14]. But
for the image enhancement process, parameters must
be adjusted and basic assumptions for firing carry-on
must be made. h must be large enough to have only one
chance to fire, which means a value exceeding the thresh-
old. The degradation of the output and the threshold
must be slow, leaving a small θ and a large g. f must
be smaller while g must be larger, which ensures the
efficient firing for almost all the pixels. θ is determined
by the gray-level to let the adjacent ones fire at different
time. According to the above assumption and analysis,
we have θ = 1/300, f = 0.1, g = 0.99, and h = 300 for
default.

The initiation of threshold matrix plays an important
role in the firing process. It determines the order and

Fig. 1. Sketch map for ICM output with typical sigmoid func-
tion.

Fig. 2. Example of enhanced effects by autowave. (a) Original
image, (b) by autowave, (c) by nature firing.

time between adjacent pixels. The ordinary Laplacian
kernel was introduced to form an initial T matrix[7]. We
adopt this simple but effective way and make an improve-
ment by using the more noise-robust kernel K=[−1 −1
−1; −1 8 −1; −1 −1 −1]/3[11] which really works for
deep analysis. The initial T matrix is

T [0] = E −K ⊗ S, (5)

where E stands for the identity matrix, S stands for the
input image which is first scaled so that the largest pixel
value is 1.

The global operation calls for the stopping condi-
tion and the iteration should be ended at the proper
time. To avoid repeating firing of the same pixel and
to affirm the performance, we introduce the two condi-
tions: Y is set to 0; the presetting iteration number is
smaller than the firing period of each neuron, which is
Nij<−ln(1+h/Sij)/ln(g). For a more robust and special
case, we leave the ending condition with no changing
output from a temporary cell matrix storing five out-
puts, which gives a direct anding quick ending for those
unused and unnecessary iterations.

Subject and objective standards representing visual
statistics are all needed for evaluating the image en-
hancement performance[12]. We introduce the statistical
characteristics of images given by the National Aero-
nautics and Space Administration (NASA) of USA[10] to
illustrate the assessment. The average of image (Av) and
the mean of zonal standard deviation of non-overlapping
blocks (MZ Std) form the coordinate. Especially, the
overall contrast is measured by taking the mean of re-
gional standard deviations instead of global standard
deviation for its weak relation with the overall visual
sense of contrast.

For color images, we often introduce the basic cog-
nitive color space HSV/HSI, and apply the algorithm
to the value/intensity (V/I) component. Those typical
testing images include portraits and scenes with poor il-
lumination. Firstly, we compare the proposed algorithm
under different conditions, such as evaluating the effects
caused by autowave (Fig. 2) and the Laplacian kernel’s
effect (Fig. 3). More enhanced results for efficiency test-
ing are shown in Fig. 4. The statistical characteristics
are illustrated in Fig. 5 with the corresponding objective
values in Table 1.
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Fig. 3. Example of enhanced effects by different Laplacian
kernels. (a) Original image, (b) by original kernel, (c) by
noise-robust kernel.

Fig. 4. More simulation results.

From the results and open-and-shut statistical data, ex-
cept the enhanced one of “Flower” is out of the “visually-
optimal window” but nearby for too dark regions, while
all the others fit it. Realistic scenes regain proper lumi-
nance compensation with higher Av and good visualiza-
tion of details at previous lower brightness with higher
MZ Std which presents the global contrast truely. Fur-
thermore, circumspect considerations of the model and
initiation setting assuredly avoid blur and much mag-
nification of block effects, especially for those in the
format of ∗.jpg.

In conclusion, we present a new algorithm for image
enhancement based on the NF-ICM model. The re-
sults show up the pleasing performance for those images
captured under poor illumination. Good visual repre-
sentation witnesses and validates the algorithm. While,
due to the lack of the item representing the inter-neuron
connection, the iteration process is inevitably slow but
very effective.

Fig. 5. Statistical characteristics of images before and after
enhanced by the proposed algorithm.

Table 1. Corresponding Objective Values

Image
Original Enhanced

Av MZ Std Av MZ Std

Girl 61.041 35.6107 123.6454 42.5772

Flower 50.5292 9.1673 192.1964 29.3382

Church 49.4403 38.8197 103.1955 52.4208

Street 51.0054 24.158 137.6584 40.3104

Building 70.5085 43.9874 145.5692 56.7924

Mount 93.0353 54.5569 139.6279 61.3358

Big Ben 74.9878 33.7292 129.6362 38.7518

Further research will give adaptive preset for param-
eters in the sigmoid function. The more adaptive MF
based on property values such as mean and standard de-
viation etc.[13] for various scenes is the ultimate aim. Al-
though the MF from the tonal correction technique is
argued basically neither a general method nor an auto-
matic method[14], but it really works and accomplishes
the extra effect known from the traditional one just for
the firing process. The parameters for the ICM model
is also considered to be set by statistical value or algo-
rithms such as genetic algorithm etc.[15] To combine the
local operation, deep analysis for CA’s realization should
be conducted to enhance the influence of original inter-
neuron communications. MFs with different designs of
output could be constructed for a wider range of appli-
cations, especially the highlight and night scenes. A new
mask with anisotropic characteristics will be the solution
for CA following the typical and practical convolution
operator.
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